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ABSTRACT 

Trace cache performance is limited by three basic issues: Indexability, 

fragmentation and duplication. The indexing problem results because the trace line is 

indexed by the starting address, then it is not possible to access the interior 

instructions. Fragmentation is a measure of empty trace line slots that are affected by 

the indexing problem. Duplication is an intended side effect because a given block 

may begin a trace line and also appear as an interior block of many other traces. 

 

In this research a lookup structure was added to the trace cache in order to make 

it possible to access the interior instructions then to reduce fragmentation and 

duplication and increase the efficiency. The lookup table will store the interior blocks 

starting addresses in addition to the starting address and ending address of the line 

after filling it in the buffer. Using this technique, if an interior block was requested 

then it can be found in the trace cache after looking for it in the lookup table and 

taking its index in the trace cache. The Proposed work was compared to Rotenberg 

trace cache that was presented in 1996. Experimental results show an average 27.53% 

improvement for duplication, 30.80% Reduction in fragmentation, and 30.66% 

improvement for efficiency. 
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1. Introduction 
 
Superscalar processors are divided into an instruction fetch and instruction 

execution mechanisms (Figure 1). They are separated by instruction issue buffer(s) to 

which instruction fetch engine fetches and places instructions, and from which 

instruction execution engine removes and executes instructions (Rotenberg et al., 

1996). 

 

 

          Figure 1: CPU General Structure (Rotenberg et al., 1996) 

 

Processors that have this structure should achieve Instruction Level Parallelism (ILP) 

(Smith and Sohi, 1995). The execution engine consists of many parallel functional 

units to enable concurrent execution of instructions, and the fetch engine contracts 

with many branches in order to provide continuous instructions to the buffer. Large 

instruction buffers are used to maintain larger number of instructions necessary for 

reaching ILP. 

The performance of the instruction fetch engine depends on the instruction cache hit 

ratio and branch prediction accuracy. It also depends on how many branches are 
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predicted per cycle so that predicting multiple branches per cycle allows the 

instructions throughput to be increased (Rotenberg et al., 1996).  

There are many factors that are important to instruction fetch performance: the branch 

prediction throughput, the frequency of control transfer instructions, noncontiguous 

instruction alignment and fetch unit latency. Since control transfer instructions occur 

frequently in the instruction cache, they create a bottleneck in the fetch bandwidth of 

the processor. And even if multiple branch predictor was used, the existence of taken 

branches results in noncontiguous fetching. Generally, dynamic instruction sequences 

do not lie always in contiguous locations in the instruction cache, especially when 

there are jumps and taken branches (Sung, 1998).   

In the instruction cache (figure 2) instructions are placed in a static order so that it is 

difficult to fetch both a branch instruction and its target in a single cycle if the branch 

is predicted taken. 

  

Figure 2:  Noncontiguous Basic Blocks from Taken Branches (Sung, 1998) 

 

Also, fetch unit latency has an effect on processor performance since incorrect control 

transfer instruction requires flushing the fetch pipeline. Increasing the fetch latency 
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limits fetch bandwidth since it is necessary for allowing higher noncontiguous basic 

block fetching and branch prediction throughput (Sung, 1998).       

A new technique was needed to store instructions in the cache in the order of 

execution so that multiple blocks of instructions can be fetched per cycle, which will 

enable the overall performance to be improved. This technique is called the Trace 

Cache. 

1.1 Trace Cache 

The trace cache is an instruction cache that enables to store multiple blocks of 

instructions in a single line according to their execution order in the program which 

make it possible to fetch the trace line each time it is needed during execution. It is a 

mechanism for increasing the instruction fetch bandwidth that was first proposed by 

Eric Rotenberg, Steve Bennett, and Jim Smith in their paper "Trace Cache: a Low 

Latency Approach to High Bandwidth Instruction Fetching" in 1996. 

Trace lines are stored in the trace cache depending on the program counter of 

the first instruction in the trace line and a set of branch predictions. For the fetch 

engine, the current program counter along with a set of branch predictions is checked 

in the trace cache for a hit. If there is a hit, the trace line is fetched from the trace 

cache with no need to refer to the instruction cache or the memory for that sequence 

of instructions. On the other hand, if there is a miss, there will be references to the 

instruction cache or the memory in order to obtain the trace then storing it in the trace 

cache. (Rotenberg et al., 1996) 

A trace line is a sequence of at most n instructions and m basic blocks where the 

limit n is the trace cache line size and m is the number of branches in the trace cache 

line, in this study n is set to 16 and m to 3. A mechanism for accurate multiple branch 

prediction is needed along with the trace cache, and this predictor should be able to 
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predict as many branches as the trace cache is capable of supplying (Rotenberg et el., 

1996, 1999; Peleg and Weiser, 1995; Patel et al., 1997, 1999). 

Trace cache stores dynamic traces for reuse which takes advantage of temporal 

locality. The trace cache is accessed in parallel with the conventional instruction 

cache such that when there is a trace cache miss, then instruction fetching process 

completes with fetching through the instruction cache. Merging the basic blocks for 

creating traces is done off the fetch mechanism so latency will not be increased, 

which is an advantage for the trace cache over other mechanisms for aligning 

noncontiguous basic blocks (Sung, 1998).  

The trace cache faces three basic problems: Indexability, duplication, and 

fragmentation. The indexing problem occurs because the trace cache line is indexed 

by the starting address of the line then it is not possible to access the interior blocks. 

Duplication may occur as a result of the indexing problem where the interior blocks 

cannot be accessed then new trace lines will contain those interior blocks which exist 

in previous lines in the trace cache. Fragmentation indicates the trace cache line slots 

that are unused because the number of instructions in a line is less than the maximum 

number of instructions that a line may contain, this happens when a trace reaches the 

predictions bandwidth m before filling the whole available trace slots (Postiff et al., 

1999; Vandierendonck et al.,2002). 

1.2 Problem Statement 

In this thesis, the effects of indexing method on the trace cache performance 

including trace cache duplication and fragmentation will be studied. The indexing 

method will be changed by applying a direct mapped lookup table that holds the 

interior blocks starting addresses for each trace cache line in addition to the starting 

address of the line. For example, if there are 3 blocks: A, B, and C in a single line in 
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the trace cache, then there will be 3 corresponding lines in the lookup table addressed 

by the starting addresses of each block of A, B and C: the first line will be addressed 

by a1, the second one by b1 and the third one by c1. The trace cache index of the 

starting addresses will be the result of XORing all of them together. In this technique, 

if an interior block like B or C is requested; it will be found and fetched from the trace 

cache if there is a hit for it in the lookup table. The fill mechanism of the trace cache 

will be updated such that the line fill buffer will include additional slots to store the 

starting address of each basic block in the line. When a block is copied from the 

conventional instruction cache to the buffer, its starting address is filled in the 

corresponding slot then written later to the lookup table, this process is repeated until 

the maximum number of instructions or the maximum number of blocks that the line 

can store is reached, the trace line then can be copied to the trace cache after 

calculating and storing its trace cache index in the lookup table. To get a trace from 

the trace cache, the required address will be checked in the lookup table and the 

output of the multiple branch predictor will be generated. If there is a hit in the lookup 

table, and if the output of the predictor is matched to the branch information stored in 

the trace line, then the trace line will be accessed through its index in the lookup table. 

1.3 Methodology 

• Formulating the problem and planning the study. 

• Discussing the Trace Cache mechanism. 

• Explaining how unused slots and the replication of blocks in different 

lines will degrade the trace cache performance since it is indexed by the 

starting address of the first basic block in each line.  

• Literature review, investigating some related work on the trace cache 

mechanism. 
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• Introducing the proposed scheme to reduce the trace cache problems. 

• Performing critical analysis and evaluating the results. 

• A conclusion about the value added from the study and the introduced 

scheme will be mentioned. 

• Some future work will be suggested. 

 

1.4 Thesis Overview 

The remaining portion of this thesis is presented in five chapters. Chapter two 

presents description of the trace cache fetch and fill mechanisms. Chapter three 

discusses relevant previous work. Chapter four introduces the proposed work to 

improve trace cache performance. Chapter five presents simulation methodology 

and results obtained by applying different benchmarks. Chapter six provides 

conclusions and suggests some future work to this research.  
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2. Trace Cache 

The concept of the trace cache was identified in section 1.1 as an instruction 

cache that enables to store multiple blocks of instructions in a single line according to 

their execution order in the program which make it possible to obtain the same 

sequence of instructions at a later time. In this section, the trace cache fetch 

mechanism will be discussed. 

 

2.1 Core Fetch Mechanism 

The core fetch unit, as shown in figure 3, is implemented using a mixture of an 

interleaved branch target buffer (BTB), a return address stack (RAS), an accurate 

multiple branch predictor, and a two-way interleaved instruction cache (Rotenberg et 

al., 1996). 

 

 

 

Figure 3: The core fetch Unit (Rotenberg et al., 1996) 
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The two-way interleaved instruction cache is designed to fetch contiguous 

instructions; it continues fetching until the maximum number of instructions or branch 

predictor throughput is met. 

All slots of the BTB are accessed in parallel with the instruction cache. Their 

jobs are to identify branches in the instructions currently being fetched and providing 

their target addresses. The BTB combines the hit information along with the branch 

predictions to produce the next address to be fetched later.  

The problem is that the core fetch unit can fetch only contiguous sequences of 

instructions, such that if a sequence contains a branch and it is predicted taken, then 

the core fetch unit can not fetch the branch instruction and its target in the same cycle, 

it will require another cycle to fetch its target. On the other hand, the trace cache can 

provide this capability. 

 

2.2 Trace Cache Fetch Mechanism 

The trace cache consists of instruction traces. The trace line length is restricted 

by the total number of instructions n and the branch predictor throughput m which 

defines also the number of basic blocks. In this study, n is set to16 and m to 3. Each 

trace line, as shown in figure 4, has some control information (Rotenberg et al. 1996): 

• Valid Bit: Indicates this is a valid trace or not. 

• Tag: Identifies the starting address of the trace. 

• Branch Flags: A single bit for each branch within the trace to indicate the 

path followed after the branch; taken or not taken. (m – 1) bits are needed to 

encode the branch flags; the mth branch of the trace does not need a flag since 

no instructions follow it.  
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• Branch Mask: indicates the number of branches within the trace and whether 

or not the trace ends in a branch. This information is used by both the trace 

cache, to determine how many branch flag to check, and by the branch 

predictor, to know how many predictions were used. The first log2(m+1) bits 

encode the number of branches in that trace line. An extra bit is used to 

determine whether or not the last instruction of the trace line is a branch. 

When the last instruction is a branch the corresponding branch flag does not 

have to be checked since no instructions follow it. 

• Trace Fall-through Address: if the last branch is predicted not taken, this 

address is used as the next fetch address. 

• Trace Target Address: If the last branch is predicted taken, this address is 

used as the next fetch address. 

 

The trace cache fetch system, which based on the original design proposed by 

(Rotenberg et al., 1996), consists of four parts: the trace cache, the fill unit, the 

multiple branch predictor, and the instruction cache. Most of the instructions are read 

from the trace cache when there is a trace cache hit. The multiple branch predictor 

gives the direction of the next control instructions. When there is a miss, instructions 

will be read from the instruction cache then stored later in the trace cache by the fill 

unit. 

The trace cache is accessed in parallel with the instruction cache, at the 

beginning of each cycle, using the current fetch address. At the same time, the 

multiple branch predictor predicts the output of the next few branches.  

When there is a trace cache hit, a trace segment is read into the issue buffer; this 

occurs when the fetch address matches the trace line tag address and the branch 
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predictions matches the branch flags in the trace cache line. On the other hand, when 

there is a trace cache miss, then instructions will be read from the instruction cache 

then added to the trace cache by the line-fill buffer.   

 

   Figure 4: The trace cache fetch mechanism (Rotenberg et al., 1996) 

 

2.3 Trace Cache Fill Mechanism 

The job of the fill unit is to fetch basic blocks of instructions one block at a time 

from the instruction cache, since all branches are predicted taken. The basic blocks 

are latched one at a time to the line-fill buffer as instruction fetching proceeds. The fill 

logic merges each new basic block of instructions with previous instructions in the fill 

buffer. Filling is completed when either the maximum trace length n or the maximum 

number of branches m is reached (Rotenberg et al., 1996; sung, 1998). When one of 
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these two cases occurs, the trace line is copied from the line-fill buffer into the trace 

cache. Control information like the branch flags and branch mask are calculated 

during the line-fill process, but the fall-through and target addresses are calculated at 

the end of the line-fill process. The trace cache line-fill buffer operation is illustrated 

in figure 5. 

 

Figure 5: Trace Cache Fill Unit Operations with n=16 and m=3 (Sung, 

1998) 
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2.4   Multiple Branch Prediction 

The multiple branch predictor is a technique used to fully utilize the fetch and 

execution bandwidth with dynamic instructions by fetching multiple basic blocks per 

cycle. There are three main components to make it possible to fetch multiple basic 

blocks per cycle: 

 

• Predicting the branch paths of multiple branches per cycle. 

• Generating fetch addresses for multiple basic blocks per cycle. 

• Designing an instruction cache with enough bandwidth to supply a large 

number of instructions. 

The branch prediction algorithm should be highly accurate and capable of 

providing predictions for multiple branches in a single cycle. In this research three 

predictions per cycle is required (Yeh et al., 1992, 1993). 
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       3. Related Work 

Yeh et al. (1993): Introduced a branch prediction algorithm capable of 

supplying predictions for multiple branches in a single cycle, a branch address cache 

to provide the address of the target basic blocks, and an instruction cache with a high 

bandwidth. This technique obtained better performance over the single basic block 

fetching mechanism since it enables the fetch engine to fetch multiple blocks per 

cycle. For instruction supply: the instruction cache access, the branch address cache 

access and the branch path prediction are done at the same time. If the instructions 

fetched contain a branch, then those instructions including the branch instruction are 

considered as a single basic block, the next branch prediction should be made to issue 

the instructions that follow the branch to the processor. Fetching multiple basic blocks 

per cycle requires that multiple branch paths are being predicted, the address of the 

basic blocks that comes after the branches should be specified and the instruction 

cache should provide multiple non contiguous blocks of instructions per cycle. 

Experimental results show that the IPC-f (instructions fetched per cycle for a machine 

front-end) improve from 3.0 to 4.2 and 4.9 for integer benchmarks respectively when 

going from one to two to three branch predictions and basic block fetches per cycle. 

for floating point benchmarks, the IPC-f went from 6.6 to 7.1 and 8.9.   

Conte et al. (1995): Proposed the collapsing buffer to enable the fetch unit to 

extract multiple, non-sequential instructions from the instruction cache by merging 

them in the proper order so that the target instruction follows the branch instruction in 

the decoder, which results in better decoder utilization and may increase the number 

of instructions fetched per cycle. The collapsing buffer handles short forward 

branches and other cases of multiple branches, it removes the useless instructions 

between an intra-block branch and its target to achieve merging such that the target 
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instruction comes after the branch instruction in the decoder which leads to better 

decoder utilization and may be to higher number of instructions per cycle, the 

collapsing buffer mechanism is shown in figure 6. This scheme contains an additional 

buffer for collapsing the gaps between instructions which are caused by the intra-

block branches. The collapsing buffer achieved near-perfect performance and 

consistently aligns instructions in excess of 90% of the time, over a wide range of 

issue rates.  

 

Figure 6: The Collapsing Buffer Mechanism (Conte et al., 1999) 
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Black et al. (1999): Presented a new block-based trace cache that can increase 

the number of instructions fetched per cycle with a more efficient storage of traces. It 

stores pointers to blocks that form traces in a smaller trace table instead of storing the 

whole instructions of a trace. It renames fetch addresses at the basic blocks and stores 

the aligned blocks at the block cache. Traces are created by accessing the block cache 

using pointers to blocks stored in the trace table. Its implementation is based on a 

concept called the fetch address renaming which can be applied to use fewer bits to 

decode instructions instead of using big instruction caches to support the full decoding 

of theses bits, The block-based trace cache structure is shown in figure 7. Fetch 

address renaming requires a table, which is maintained at completion time, to match 

the fetch addresses of instructions to their renamed pointers. Fetch address renaming 

can be achieved at the instruction cache line, using this technique the index of the 

instruction cache line is used for fetching as an alternative of using the fetch address, 

which reduces the latency of instruction cache access. The renaming approach 

assumes the traditional instruction cache, which may contain non-contiguous basic 

blocks, which will necessitate trace construction at fetch time when multiple blocks 

are fetched. The block-based trace cache organization is similar to the conventional 

instruction cache one, such that they support the same superscalar interior execution 

but they differ in the storage of traces. The traditional instruction cache reduces most 

of the latency and complexity of fetching instructions to completion time using a fill 

unit. The block-based trace cache takes a portion of the complexity to improve the 

storage of traces and the flexibility of traces construction, it has four basic parts: the 

block cache, the trace table, the fill unit and the rename table. The block-based 

technique stores contiguous basic blocks individually in the block cache instead of 

storing the instructions in contiguous traces from multiple basic blocks. The trace 
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table stores the renamed pointers to these blocks for trace construction; it is a part of 

the next trace predictor which uses the renamed pointers execution history and the bits 

of branch history to produce the predicted renamed pointer which will be used to 

access the trace table. The block cache stores contiguous instruction blocks, it is 

replicated to provide multiple synchronized accesses. The rename table provides the 

fetch address renaming of basic blocks, it is used at fetch time to find if the required 

fetch address is existed in a block stored in the block cache. The block-based trace 

cache achieved higher number of instructions fetched per cycle (IPC) than the 

conventional trace cache when the storage is limited; the block-based trace cache with 

1K entry block cache achieved the same performance of the conventional trace cache 

with 32K entry.     

 

 

Figure 7: The block-based trace cache (Black et al., 1999) 
 

  
Jourdan et al. (2000): Suggested a new mechanism called the eXtended Block 

Cache (XBC) to improve the trace cache hit ratio by providing a multiple-entry 

single-exit instruction blocks. An extended block is a sequence of instructions that are 

ended on a conditional or indirect jump. Instructions in the extended blocks reside in a 
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reverse order so that extensions of blocks are easy to be added. In this technique, there 

is at most one conditional branch per extended blocks which removes most of the 

redundancy, and since there are multiple entries per extended blocks, the extended 

block index is derived from the IP of the ending instruction in the block. The XBC 

structure is described in figure 8. The extended block (XB) is the basic unit of the 

XBC, it is a sequence of instructions ending by a conditional or indirect jump. The 

multiple entry points and a single exit characteristic of the XB is closely the opposite 

of a trace. An XB is entered either at its start (head) or any where in the middle. When 

the XB does not contain conditional or indirect branches, once it is entered it can only 

be exited at its end. The tag and index of the XB are derived from the IP which exists 

in its ending instruction which makes it possible for the XB to have multiple entry 

points. Since unconditional branches forward the flow towards a single position, they 

do not end XBs, but conditional and indirect branches end XBs because they branch 

to multiple locations. The XBC target is to provide multiple XB per cycle, it is 

required to predict only single branch per XB since conditional and indirect branches 

end a XB, as a result with n predictions bandwidth per cycle, n predictions and fetches 

of XBs can be performed per cycle. To increase the XBC bandwidth for a specific 

prediction bandwidth, extended XBs can be made using conditional branch promotion 

which allows the promotion of a conditional branch to be treated as an unconditional 

branch. When the XB ends with a highly biased branch, the XB is promoted and 

joined with the following XB. The XBC cache is arranged as a banked cache, each 

bank has its own decoder, so that a different set may be accessed in each bank for a 

given cycle. For a single cycle, instructions may be received from all banks in 

parallel. The bank structure supplies storing XBs of different length and fetching 

multiple XBs per cycle. It enables to fetch multiple XBs per cycle by receiving 
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instructions from all banks in the same cycle, if there are two successive XBs stored 

in non-overlapping banks then both of them can be fetched in the same cycle, but if a 

bank confliction occurs then only part of the second XB can be fetched. Experimental 

results showed that the XBC supports a better hit rate than the trace cache while 

achieving the same instruction bandwidth with the same number of branch predictions 

per cycle.  

 

Figure 8: The XBC structure (Jourdan et al., 2000) 
 

 

Ramirez et al. (2000): Proposed selective trace storage to improve the use of 

trace cache resources by reducing the replication of traces between the trace cache 

and the instruction cache, as shown in figure 9. They modified the fill unit of the trace 

cache to enable it to store only traces that contains taken branches which can not be 

achieved in a single cycle from the instruction cache. In the selective trace storage, 

they divided the traces into two kinds: red and blue traces. Only red traces (which are 

discontinuous) will be stored in the trace cache. Using this modification to the fill 

unit, replacing of the red traces from the trace cache with a blue one that obtained 
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from the fetch unit can be avoided. An instruction sequence that does not contain a 

taken branch can be fetched from the instruction cache in a single cycle with no need 

to be stored in the trace cache, but such traces are also stored in the trace cache. Red 

traces are built at run time by the fill unit and blue traces are built by the compiler 

then stored in the instruction cache, but the fill unit also stores the blue traces in the 

trace cache so that they are stored in the trace cache and the instruction cache at the 

same time. 

  
 

Figure 9: Redundancy of traces (Ramirez et al., 2000) 
  

Code reordering organizes the basic blocks in the program so that the most likely 

execution path does not contain any taken branch; this is achieved by moving basic 

blocks thus the target of the non taken branch is the most likely including unused 

basic blocks after completing the main execution path. When the number of sequence 

breaks which is found during program execution decreases then the proportion of blue 

traces increases. Reordering the basic blocks increases the blue trace proportion and 

reduces the average of breaks in traces, then reduces the number of cycles needed to 

build a red trace from the fetch unit. Since the blue traces are not stored in the trace 

cache, the same number of traces should store more red traces than before. The trace 
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cache miss ratio will increase as blue traces will cause trace cache misses, at the same 

time the probability of finding red traces will increase, but the blue traces can still be 

brought from the instruction cache. As final conclusions, the selective trace storage 

avoided storage of blue traces by not repeating the work that was done at compile 

time, then to obtain hardware cost reductions. The cooperation between software and 

hardware techniques results in better performance and cost reduction of hardware 

devices. Results show that selective trace storage with code reordering used on a 32 

entry trace cache do as well as a 2048 entry trace cache without the improvements.       

 

Oberoi and Sohi. (2002): Suggested a high-bandwidth fetch mechanism such 

that instead of fetching large blocks of instructions from a single point, it fetches 

small blocks of instructions from several points in a program, which will lead to a 

higher fetching bandwidth using multiple synchronized fetching units. The proposed 

technique is flexible to instruction cache misses and multithreading. The mechanism 

of fetching instructions according to the value of program counter is not adequate for 

fetching instructions from multiple points in the program. So to fetch from multiple 

addresses, the addresses of multiple instructions should be known in the near future 

instead of just know the single current address. Here, the instruction stream is divided 

into traces; the trace is a sequence of instructions stored according to their dynamic 

order. When future control flow can be predicted, many traces can be fetched in 

parallel using multiple instruction sequencers. The multiple sequencers structure is 

illustrated in figure 10. The instruction fetch queue (IFQ) is preceded by a number of 

trace buffers, the fetch unit is repeated, and fetched instructions are stored in buffers 

instead of directly to the IFQ. 
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Figure10: Multiple Sequencers Structure (Oberoi and Sohi., 2002) 
 

 

A trace predictor is used for control prediction rather than a branch predictor. The 

trace buffer is a FIFO queue of instructions, a set of registers is associated with it to 

describe its fetch context including a program counter, a starting address, branch 

prediction bits, and bits to indicate whether the buffer is valid and active, such that it 

is valid when it contains a trace not consumed completely by the IFQ and it is active 

if instructions are still being fetched into it. Instructions are fetched into active trace 

buffers starting at the address pointed to by each program counter value of the buffer, 

each program counter value is modified when instructions are fetched into it. When 

all instructions in the trace are fetched into the IFQ, the buffer is set to invalid. For the 

fetching unit when start executing a program, instructions are fetched sequentially by 

the fetch unit and placed in an available trace buffer rather than placing them in the 

instruction fetch queue. It checks each instruction fetched for termination conditions, 

and at the end of the trace it gets then links a new trace buffer to the old one and set 

the old buffer to be inactive. The conclusions are that the fetch unit of this technique 

is capable of accomplishing a fetch bandwidth similar to that of the trace cache, and 

decrementing the number of instructions fetched from the instruction cache. Results 
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show that multiple sequencers are more flexible to larger instruction cache miss ratio 

than a trace cache. 

 

Shaaban and Mulrane. (2004): Introduced the sliding window fill mechanism. It 

is a method to efficiently populate the trace cache by exploiting trace continuity and 

defines probable start regions to improve trace cache hit rate. Trace continuity is a set 

of basic blocks that constitute a dynamic path free of indirect jumps, and probable 

start regions are these points that begin regions of code that will be encountered later 

in the normal execution. The sliding window involves a scheme that incorporates the 

fill selection table and the sliding window fill mechanism which is shown in figure 

11. 

 

 
Figure 11: The Sliding Window Fill Mechanism (Shaaban and Mulrane., 2004) 

 
 
The fill selection table concept is that the program counter address that the core fetch 

unit comes across every cycle is identified as a probable entry point, these addresses 

are then stored in the fill selection table. The fill selection table entry consists of a 

valid bit, an address tag and a counter. When a fetch address is encountered, the 

counter value of the corresponding entry is incremented, the counter of a fill selection 
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table entry also will be incremented by the fill unit when an n-constrained trace is 

constructed and added to the trace cache. The sliding window fill mechanism is 

implemented as a circular buffer, pointers are used to mark the start of a trace segment 

(trace-head), the final instruction of a trace segment (trace-tail), and the region at 

which retired instructions are added to the fill buffer (next-instruction). The next-

instruction pointer is incremented when a retired instruction is added to the fill buffer, 

also the trace segment that is surrounded by the trace-head and the trace-tail pointers 

will be added to the trace cache. Simulation results show that this fill unit scheme 

increased the hit rates of trace cache by an average of 7% independently, and by an 

average of 19% when combined with branch promotion which yielded also a 17% 

increase in fetch bandwidth. 

 

Ramirez et al. (2005): Proposed a technique to increase fetch performance by 

using compiler optimizations to optimize the arrangement of instructions in memory. 

It aims to enable the code to make effective use of the underlying hardware regardless 

of the processor. This technique manages basic blocks into chains, as shown in figure 

12, to enable basic blocks that are executed sequentially to reside in consecutive 

memory locations, then maps these chains in memory to decrease misses in the 

important sections of the program. The software trace cache algorithm is based on 

profile information to obtain a direct graph of basic blocks with weighted edges. The 

first step in this algorithm is the seed selection such that it is required to select the 

starting points of the traces (seeds) before organizing the basic blocks into traces. 

Here, all subroutine entry points are selected as seeds, the list of seeds (ordered by 

basic block weigh) are organized from the most frequently executed to the least 

executed seed, then seeds that have been included in a previous trace are ignored. The 
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automatic selection of seeds is important since the seed basic blocks where selected 

by the user based on a detailed analysis of the dynamic behavior of the application or 

the analysis of source code.  

 

Figure 12: An Example of Basic Block Chaining (Ramirez et al., 2005) 

 

For trace construction, a greedy algorithm is used to follow the most likely path out of 

a basic block, storing the path followed as the needed trace. The algorithm follows 

path despite crossing the subroutine boundary, and building traces which cross many 

subroutines. The trace finishes when all targets from a basic block have been visited 

or a subroutine return for the main procedure is met.  For loops, the algorithm follows 

the most likely path through the loop body until the backward branch edge is found. 

The back-edge leads to an already visited basic block, the main target of the branch 

has been visited then the secondary target is chosen. Finally, trace mapping is applied 
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which maps the resulting traces in the order they were created, from the most 

frequently executed to the least executed one. Then equally popular traces are mapped 

next to each other, reducing conflicts among them. The performance impact of the 

software trace cache was analyzed over three features of fetch performance: the 

effective fetch width, the instruction cache miss rate, and the branch prediction 

accuracy. Results show that code layout optimizations provide improvements to the 

instruction cache performance, it also increases the effective fetch width of the front-

end engine, it is more amenable to branch prediction, and it increases both the spatial 

and temporal locality. 

  
Zhang et al. (2006): Applied speculative value specialization. Value 

specialization is a mechanism that can improve the performance of a program when it 

gets the same values frequently. They applied it dynamically by employing the trace 

cache. They implemented a small hardware profiler to recognize loads that have semi-

invariant runtime values. A specialized engine generates highly optimized traces 

which will reside in the trace cache. These traces are confirmed during execution and 

mis-specialization is recovered without new hardware overhead. The specialization of 

traces in the trace cache simplifies the implementation of value prediction and allows 

further optimization. The value specialization architecture is shown in figure 13. 

Value specialization architecture includes a banked value profiler to discover value 

biases, a trace cache to store execution traces, and a specialization engine to optimize 

traces. Optimizations that are demonstrated in this model would apply similarly if 

there was a traditional instruction cache backing the trace cache (in this model the 

conventional instruction cache is absent). For the architecture in figure 13, load value 

profiling: is used to identify loads with semi-invariant behavior and their common 

values. 
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Figure 13: The value specialization architecture (Zhang et al., 2006) 
 

 
The profiler sits on the backend of the pipeline and can identify the top N values of 

each load instruction. Trace cache: instructions are fetched primarily from the trace 

cache. On a trace cache hit, the whole trace is fetched from the trace cache in a single 

cycle, each trace has a trace ID to define the next trace to be fetched from the trace 

cache. In this model, the trace cache format has an s-flag to indicate whether the trace 

is value specialized (s-trace) or non-specialized (n-trace). There are N specialized 

values per trace, and in this model N is set to 4. For each n-trace there is at most one 

s-trace, a newly created s-trace always writes over the previous one, the trace cache 

stores the s-trace and the n-trace for the same block, here both traces share the same 

ID, so when the trace cache hits for two blocks with the same ID, the trace confidence 

scheme will be used to decide which trace to execute. The trace confidence is used to 

decide if an n-trace or s-trace is to use when both are existed in the trace cache. The 

conclusions are that this technique examined a trace cache architecture that allows to 

store trace blocks in both non-specialized and value specialized form. The specialized 

traces identify opportunities for value prediction and specializes based on the 

particular value profiled. Results show an average of 29% speedup over the 
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conventional trace cache, value specialization achieved 17% speedup relative to 

hardware value prediction.    

 
Santana et al. (2007): Called the sequence of instructions from the target of a 

taken branch to the next taken branch, a stream, as presented in figure 14. They 

proposed a mechanism to enlarge the instruction stream since the long length of the 

instruction streams makes it possible for the fetch engine to provide a high fetch 

bandwidth and to hide the branch predictor latency then to improve the stream fetch 

engine.  

 

Figure 14: Example of instruction streams (Santana et al., 2007) 

 

They presented the multiple stream predictor that deals with all kinds of branches by 

combining single stream into long virtual streams, it uses correlation with previously 

executed streams to accurately predict streams. The fetch address, the starting 

addresses of previous streams, and the contents of a history register are hashed 

together to gain an index into the prediction table. The use of path correlation enables 

the stream predictor to store multiple streams starting at the same address. A longer 

history supports an improvement in branch prediction accuracy, long history also 

provides more entries used by each stream and then more aliasing in the prediction 
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table. The objective of the multiple stream predictor is to predict streams together that 

are executed frequently as a sequence. Unlike the trace cache, the instructions related 

to a sequence of streams are not stored together in a special purpose buffer. The 

benefit of this technique is to group predictions, making it possible to tolerate the 

latency of the prediction table access. Results show that this predictor design provides 

predictions that on average contain more than 20 instructions, also it does not need 

hardware overriding mechanism to hide the branch prediction table access latency, 

and then this design requires less chip area and consumes less energy. 
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4. The Proposed Work 

The main objective of this study is to evaluate the efficiency of the trace cache 

parameters on the overall performance. A new indexing method was proposed and its 

effects were studied on two performance parameters: duplication and fragmentation.  

 

4.1   Duplication 

The duplication problem in the trace cache mechanism is a result of the indexing 

method where trace cache lines are indexed by the starting address of the first basic 

block in each line.  

If any interior block in the line is requested, then it can not be accessed since the 

line is indexed by the starting address of the first basic block only, then there will be a 

miss in the trace cache. The fetch engine will look for it in the instruction cache then 

write it in a new line in the trace cache which leads to the duplication problem.  

The interior blocks will be stored in multiple lines in the trace cache where 

many slots will be wasted. As shown in the example in figure 15, blocks B and K 

appear as the first blocks of lines 3 and 4 and at the same time as interior blocks of 

lines 1 and 2 respectively in a 4-entry trace cache. 

Duplicated instructions occur as a consequence of branch behavior since 

conditional branches take different directions. For example, the two branches (A  B 

D) and (A  C  D) will lead to two different directions then to duplicated 

instructions in the trace cache (Postiff et al., 1999). 

Duplication was calculated as the average across all cycles, duplicated 

instructions equal to the total instructions subtracted by the unique ones. Duplicated 

instructions was calculated for each clock cycle then divided by the total number of 

instructions.  
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Duplication   = (Total instructions – Unique instructions)       . 

Total instructions 

(Postiff et al., 1999) 

 

      B5 B4 B3 B2 B1 A5 A4 A3 A2 A1 

     K5 K4 K3 K2 K1 J6 J5 J4 J3 J2 J1 

        C3 C2 C1 B5 B4 B3 B2 B1 

    M7 M6 M5 M4 M3 M2 M1 K5 K4 K3 K2 K1 

 

Figure 15: An example of duplication in a 4-entry trace cache (Postiff et al., 1999) 

 

4.2   Fragmentation 

Fragmentation indicates the trace cache line slots that are unused, as illustrated 

in figure 16. This occurs when the number of instructions in a line is less than the 

maximum number of instructions n that a trace line may contain, this action takes 

place when a trace line reaches the predictions bandwidth m before filling the whole 

available trace slots.  

Fragmentation was calculated as the ratio of empty slots to the total slots; this 

ratio is calculated in each cycle, the average fragmentation is the sum of 

fragmentation values for each cycle divided by the total number of cycles. (Postiff et 

al., 1999) 

 

Fragmentation =    Empty instruction slots      . (Postiff et al.,1999) 

                       Total instruction slots 
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          Figure 16: An example of Fragmentation in a 4-entry trace cache 

 

The efficiency of the trace cache, which describes the overall performance, was 

measured by a combination of duplication and fragmentation. 

 

Efficiency = (1 – Fragmentation) * (1 – Duplication). (Postiff et al., 

1999) 

 

 

For the example in figure 15: 

 

Duplication   = (Total instructions – Unique instructions) = (41 – 31) / 41 = 0.24 

                            Total instructions 

 

Fragmentation =       Empty instruction slots   = 23 / (4 * 16) = 0.36 

                         Total instruction slots   

 

Efficiency = (1 – Fragmentation) * (1 – Duplication) = (1 – 0.36) * (1 – 0.24) = 0.49 
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4.3  Indexing Method 

Indexability gives information about the existence of traces in the trace cache. 

The problem with the indexing method used in the trace cache is that each line is 

indexed by the starting address of that line, so a miss may occur because the interior 

blocks cannot be accessed directly even though they are existed in the trace cache 

(postiff et al., 1999).  

This problem requires adding a new technique to make it possible to see the 

interior instructions then fetch them directly from the trace cache instead of the 

additional duplication and overhead of bringing them from the instruction cache to the 

trace cache. 

 

4.4  The Proposed Technique 

In this study the indexing method was changed in order to reduce duplication 

and fragmentation of the trace cache. The proposed technique is to add a lookup 

structure to the trace cache. This lookup table holds the starting addresses of all 

blocks in the trace cache line which make it possible to find the interior instructions in 

the line. This work will change the trace cache selection and fill mechanisms. 

For Rotenberg trace cache as shown again in Figure 17, to read a line from the 

trace cache, the requested address should match the starting address of that line, and 

the branch prediction should match the branch information in the trace line. A new 

trace may be created even if it is an interior part of already stored traces and multiple 

trace directions can not be stored at the same time in the trace cache because they 

have the same starting addresses. 
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Figure 17: Rotenberg Trace Cache Structure (Rotenberg et al., 1996) 

          

         4.4.1   Trace Cache Index 

         In the proposed technique, each trace cache line is indexed by the result of 

XORing the starting addresses of all blocks in that line. Using this indexing method 

enables many trace paths to be stored in the trace cache at the same time, but for 

Rotenberg trace cache only the latest trace will be stored since the line is indexed by 

its starting address. 

          

4.4.2   Trace Line Fetch Mechanism 

In the proposed solution, a lookup table was added to make it possible to see the 

interior instructions in the trace cache then to minimize the miss rate. The lookup is a 
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direct map structure that holds the starting addresses of all blocks in the trace cache 

line plus the address of the last instruction in the line. The lookup has a valid bit to 

indicate the validity of the entry and an offset value to indicate interior basic block 

locations in the trace line. 

 

 

Figure 18: Proposed Trace Cache Structure 

 

For the proposed trace cache structure, as shown in figure 18, to get a trace from 

the trace cache: the requested address will be checked in the lookup table, and the 

output of the multiple branch predictor will be generated at the same time. If the 

requested address hit in the lookup table and if the output of the multiple branch 

predictor is matched to the branch information stored in the trace line then the trace 

line will be accessed in the trace cache through its index in the lookup table. If the 
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requested address cannot be found in the lookup table or if the multiple branch 

predictor output does not match the branch information stored in the trace line, the 

instruction will be brought from the instruction cache. 

 

4.4.3 Trace Cache Fill Mechanism 

New trace lines will be filled in the buffer before transferring them to the trace 

cache. The filling process to the buffer will be terminated when the number of 

instructions reaches 16 or when the number of branches reaches 3. In the proposed 

solution 4 extra slots were added to the fill buffer: 

1- One slot that is initialized by the starting address of the first basic block of the 

trace cache line. 

2- 2 slots to hold interior blocks starting addresses. 

3- One slot to hold the address of the last instruction in the line; which will be the 

branch instruction of the last basic block. 

In other words, there are m slots for the starting addresses of the basic blocks in 

the trace line plus one slot for the address of the last branch instruction in the line. 

 

When start filling the buffer, the first slot is initialized by the starting address of 

the line. Whenever a new starting address or the last branch address is added it will be 

filled in its own slot in the buffer. For tracking the whole filling operation: figure 19 

illustrates the process of adding the first instruction to the line fill buffer, figure 20 

shows adding the entire first block of the trace line to the fill buffer, figure 21 

demonstrates adding the starting address of the next basic block to the buffer and 

lookup table, figure 22 shows complete filling the starting and branch addresses and 
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figure 23 shows adding the trace cache index to the lookup table after complete filling 

the buffer and lookup table. 

 

    Figure 19: Adding the First Instruction to the Fill Buffer 

 

In figure 19, after adding the first instruction to the buffer it is then stored in the 

lookup table with its own address and offset, the valid bit is assigned initially to 0 at 

this step and the trace cache index has not been calculated yet. 

 

 

Figure 20: Adding the First Block to the Fill Buffer 
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In figure 20, the first basic block is now completed and stored in the trace line 

slot which exists in the line fill buffer, it consists of four instructions: a, b, c, and d.  

 

 

Figure 21: Adding the Starting Address of the Second Basic Block   

 

In figure 21, the starting address of the next basic block, which is e, is added to 

the fill buffer and the lookup table and it is XORed with a. Its offset is assigned to 4 

and its valid bit is assigned initially to 0. 

 

In figure 22, the starting and branch addresses of the final basic block, which is 

h and k, are added respectively to the fill buffer then h is XORed with a and e, after 

that they are added to the lookup table with offset = 6 for the starting address h and 9 

for the branch address k, the valid bits are assigned initially to 0 for both of them, and 

the trace line slot is now completed. 
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Figure 22: Complete Filling the Starting and Branch Addresses 

 

Figure 23: Adding the Trace Cache Index to the Lookup Table   

 

In figure 23, after complete filling the buffer and the lookup table by the starting 

addresses of the whole blocks and the branch address of the final block, the trace 
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cache index value is calculated, which is the final result of XORing all the starting 

addresses of all blocks in the same line, and stored in the trace cache index field in the 

lookup table, which is assumed to be x in our example. The trace cache index value 

will be used to access the trace cache upon requesting any instruction indexed by x. 

Finally, trace cache line and lookup entries are validated. 
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5. Simulation Methodology and Results 

This chapter presents the general results of the thesis research. Using the 

simulation methodology that is discussed in section 5.1, the effects of various 

parameters on trace cache performance are explored; these parameters include 

fragmentation, duplication, and efficiency. The proposed results are compared to the 

original results presented by Rotenberg and to see the behavior of each technique, 

100000 instructions were executed using different trace cache sizes: 256, 512, 1024, 

and 2048 lines. 

 

5.1 Simulation Methodology 

The proposed work was implemented using the simple scalar tool set. The tool 

set takes binary compiled programs and simulates their execution. In this research 

out-of-order simulator was used, this simulator supports out-of-order issue and 

execution, based on the Register Update Unit (RUU). The RUU scheme uses a 

reorder buffer to automatically rename registers and hold the result of awaiting 

instructions. In each cycle the reorder buffer retires completed instructions in program 

order to the architected register file (Burger and Austin, 1997). 

Out-of-order simulator is divided into several modules, each one simulate the 

behavior of a modern processor part, as shown in Figure 24: 

• Ruu_fetch: The fetch unit models the machine instruction bandwidth. In 

each cycle it fetches instructions from only one I-cache line and places 

them in the dispatch queue. 

• Ruu_dispatch: This routine is where instruction decoding and register 

renaming is performed. It is the one in which branch mispredictions are 

noted. It enters and links instructions into the RUU and the load/store 
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queue (LSQ), as well as splitting memory operations into two separate 

instructions 

•    Scheduler: update RUU and the LSQ. 

•    Exec: update functional unit and D-cache state. Schedule writeback 

events. 

•    Writeback: update event queue, RUU, LSQ and ready queue. Branch 

mispredictions recovery updates. 

•    Commit: update RUU, LSQ and D-cache state. 

 

 

 

Figure 24: Out of Order SimpleScalar Simulator Modules (Burger and Austin, 

1997) 

  

In this research SPEC2000 benchmark binaries were used which are maintained 

by the Standard Performance Evaluation Corporation (SPEC). SPEC2000 benchmark 
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is typically a computer program that performs a defined set of operations describing 

how the tested program performed.  

SPEC2000 is divided into two groups: SPECint and SPECfp. The SPECint 

measures the integer performance of a CPU and SPECfp measures the floating point 

performance of a CPU.  

Computer benchmark metrics usually measure throughput or speed; throughput 

measures how many workload units per time unit were accomplished, and speed 

measures how fast the workload was accomplished.  

In this research the benchmark binaries were recompiled to be compatible with 

the simple scalar tool set. The benchmarks used are listed in tables 1 and 2. (Henning 

J. 2000) 

 

Table 1: Integer SPEC2000 Used in Simulation  

  
Benchmark Description 

vpr FPGA Circuit placement and routing

gcc C programming language compiler

parser Word processing

 

 

 

 

 

Table 2: Floating Point SPEC2000 Used in Simulation  

Benchmark Description 

art Image recognition/neural networks

equake Seismic wave propagation simulation

ammp Computational  chemistry
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       5.2 Simulation Results and Analysis 

To compare between Rotenberg trace cache and the proposed technique, the 

benchmarks listed in tables 1 and 2 were executed to measure different parameters 

including fragmentation, duplication and efficiency when the proposed trace cache 

line is indexed by XORing the starting addresses of all basic blocks, and when it is 

indexed by just the starting address of the first basic block of the line. 

      5.2.1 Results When Indexing by XORing the Starting Addresses 

       5.2.1.1 Fragmentation 

       Experimental results show improvement in fragmentation for both integer and 

floating point benchmarks, it reaches 23.59% reduction in fragmentation for integer 

benchmarks and 38.01% for floating point benchmarks. The proposed work has less 

fragmentation than Rotenberg trace cache for all trace cache sizes, Figure 25 shows 

average improvement of fragmentation across different benchmarks, Figure 28 and 

table 3 show average improvement of fragmentation across different trace cache sizes 

and benchmarks. 

Average Improvement of Fragmentation
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Figure 25: Average Improvement of Fragmentation 
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       5.2.1.2 Duplication 

Experimental results show 28.20% reduction in duplication for integer 

benchmarks and 26.86% for floating point benchmarks. The proposed work has less 

Duplication than Rotenberg trace cache for all trace cache sizes. Figure 26 shows 

average improvement of duplication across different benchmarks, Figure 29 and table 

4 show average improvement of duplication across different trace cache sizes and 

benchmarks. 

 

Average Improvement of Duplication
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Figure 26: Average Improvement of Duplication 

 

       5.2.1.3 Efficiency 

Fragmentation and duplication parameters are used to measure how efficiently 

the trace cache stores instructions. The experimental results show improvement in 

trace cache efficiency for integer and floating point benchmarks over Rotenberg trace 

cache for all sizes, it reaches 28.57% for integer benchmarks and 32.75% for floating 

point benchmarks. Figure 27 shows average improvement of efficiency across 
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different benchmarks, Figure 30 and table 5 show average improvement of efficiency 

across different trace cache sizes using different benchmarks. 
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Figure 27: Average Improvement of Efficiency 
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Fragmentation
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Figure 28: Fragmentation Results When Used With Different Trace Cache Sizes and Benchmarks 
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Duplication
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Figure 29: Duplication Results When Used With Different Trace Cache Sizes and Benchmarks 
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Efficiency
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Figure 30: Efficiency Results When Used With Different Trace Cache Sizes and Benchmarks 
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Table 3:  Fragmentation Results for Rotenberg Trace Cache and the Proposed            

Technique Using Different Trace Cache Sizes and Benchmarks. 

  

Fragmentation 
Benchmark Technique Trace Cache Size 

  256 512 1024 2048 
ammp Rotenberg 8.80% 8.80% 8.66% 8.52% 

 Proposed 6.57% 6.38% 6.43% 6.22% 
equake Rotenberg 3.77% 3.71% 3.45% 3.44% 

 Proposed 2.12% 2.32% 2.38% 2.38% 
art Rotenberg 5.40% 5.47% 5.34% 5.24% 

 Proposed 5.28% 4.66% 4.74% 4.92% 
parser Rotenberg 4.27% 4.16% 4.72% 4.55% 

 Proposed 2.48% 1.92% 1.77% 1.69% 

vpr Rotenberg 8.44% 8.63% 8.06% 7.92% 
 Proposed 5.47% 5.06% 4.71% 4.66% 

gcc Rotenberg 4.47% 4.37% 4.54% 4.56% 
 Proposed 4.03% 3.67% 3.58% 3.25% 

Table 4:  Duplication Results for Rotenberg Trace Cache and the Proposed            

Technique Using Different Trace Cache Sizes and Benchmarks. 

 

Duplication 

Benchmark Technique Trace Cache Size 

  256 512 1024 2048 
ammp Rotenberg 43.91% 47.33% 48.90% 49.92% 

 Proposed 22.40% 25.88% 28.32% 29.55% 
equake Rotenberg 75.14% 75.33% 76.76% 76.32% 

 Proposed 66.60% 66.35% 67.18% 67.18% 
art Rotenberg 54.57% 55.65% 57.62% 57.24% 

 Proposed 40.14% 41.58% 39.83% 39.57% 
parser Rotenberg 65.11% 69.08% 71.25% 72.40% 

 Proposed 54.39% 59.32% 61.82% 63.23% 
vpr Rotenberg 58.79% 61.60% 63.99% 65.53% 

 Proposed 32.88% 38.56% 42.10% 43.27% 
gcc Rotenberg 54.12% 60.25% 63.40% 65.52% 

 Proposed 35.44% 43.61% 45.88% 48.25% 
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Table 5:  Efficiency Results for Rotenberg Trace Cache and the Proposed            

Technique Using Different Trace Cache Sizes and Benchmarks. 

 

Efficiency 
Benchmark Technique Trace Cache Size 

  256 512 1024 2048 
ammp Rotenberg 51.15% 48.03% 46.68% 45.82% 

 Proposed 72.50% 69.40% 67.07% 66.07% 
equake Rotenberg 23.93% 23.75% 22.44% 22.87% 

 Proposed 32.69% 32.86% 32.04% 32.04% 
art Rotenberg 42.97% 41.93% 40.12% 40.52% 

 Proposed 56.70% 55.70% 57.31% 57.46% 
parser Rotenberg 33.40% 29.63% 27.39% 26.35% 

 Proposed 44.49% 39.90% 37.51% 36.14% 
vpr Rotenberg 37.73% 35.09% 33.11% 31.74% 

 Proposed 63.45% 58.33% 55.17% 54.09% 
gcc Rotenberg 43.83% 38.01% 34.94% 32.91% 

 Proposed 61.95% 54.32% 52.18% 50.06% 

 

Using different trace cache sizes and benchmarks for fragmentation, as shown in 

figures 25, 28 and table 3, the proposed work has less fragmentation than Rotenberg 

trace cache for all sizes. Average improvement in fragmentation reached 26.40% for 

ammp, 35.77% for equake, 8.59% for art, 55.28% for parser, 39.82% for vpr and 

18.93% for gcc. 

Figures 26, 29 and table 4 demonstrate that the proposed work has less 

duplication than Rotenberg trace cache for all trace cache sizes. Average 

improvement in duplication reached 44.30% for ammp, 11.94% for equake, 28.37% 

for art, 14.12% for parser, 37.41% for vpr and 29.03% for gcc. 

The experimental results show improvement in efficiency over Rotenberg trace 

cache for all sizes, as shown in figures 27, 30 and table 5. The average improvement 

reached 30.32% for ammp, 28.28% for equake, 27.10% for art, 26.18% for parser, 

40.42% for vpr and 31.64% for gcc. 
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5.2.2 Results When Indexing by the Starting Address of the Line 

5.2.2.1 Fragmentation 

Experimental results show improvement in fragmentation for both integer and 

floating point benchmarks, it reaches 13.48% reduction in fragmentation for integer 

benchmarks and 34.93% for floating point benchmarks. Figure 31 shows average 

improvement of fragmentation across different benchmarks, Figure 34 and table 6 

show average improvement of fragmentation across different trace cache sizes and 

benchmarks. 
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Figure 31: Average Improvement of Fragmentation 

 

5.2.2.2 Duplication 

Experimental results show 27.44% reduction in duplication for integer 

benchmarks and 25.69% for floating point benchmarks. Figure 32 shows average 

improvement of duplication across different benchmarks, Figure 35 and table 7 show 

average improvement of duplication across different trace cache sizes and 

benchmarks. 
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The experimental results show improvement in trace cache efficiency for integer 

and floating point benchmarks, it reaches 28.57% for integer benchmarks and 32.75% 

for floating point benchmarks. Figure 33 shows average improvement of efficiency 

across different benchmarks, Figure 36 and table 8 show average improvement of 

efficiency across different trace cache sizes and benchmarks. 

5.2.2.3 Efficiency 
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Figure 33: Average Improvement of Efficiency

Figure 32: Average Improvement of Duplication 
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Fragmentation
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Figure 34: Fragmentation Results When Used With Different Trace Cache Sizes and Benchmarks 
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Duplication
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Figure 35: Duplication Results When Used With Different Trace Cache Sizes and Benchmarks 
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Efficiency
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Figure 36: Efficiency Results When Used With Different Trace Cache Sizes and Benchmarks 
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Table 6:  Fragmentation Results for Rotenberg Trace Cache and the Proposed            

Technique Using Different Trace Cache Sizes and Benchmarks. 
 

Fragmentation 
Benchmark Technique Trace Cache Size 

  256 512 1024 2048 
ammp Rotenberg 8.80% 8.80% 8.66% 8.52% 

 Proposed 7.26% 7.06% 6.62% 6.51% 
equake Rotenberg 3.77% 3.71% 3.45% 3.44% 

 Proposed 3.41% 2.90% 2.68% 2.66% 
art Rotenberg 5.40% 5.47% 5.34% 5.24% 

 Proposed 5.46% 5.80% 5.12% 5.03% 
parser Rotenberg 4.27% 4.16% 4.72% 4.55% 

 Proposed 2.78% 2.47% 2.39% 2.22% 

vpr Rotenberg 8.44% 8.63% 8.06% 7.92% 
 Proposed 5.81% 5.48% 5.04% 4.79% 

gcc Rotenberg 4.47% 4.37% 4.54% 4.56% 
 Proposed 3.70% 3.30% 3.29% 3.23% 

 

Table 7:  Duplication Results for Rotenberg Trace Cache and the Proposed            

Technique Using Different Trace Cache Sizes and Benchmarks. 
 

Duplication 

Benchmark Technique Trace Cache Size 
  256 512 1024 2048 

ammp Rotenberg 43.91% 47.33% 48.90% 49.92% 
 Proposed 24.69% 26.38% 28.85% 29.86% 

equake Rotenberg 75.14% 75.33% 76.76% 76.32% 
 Proposed 64.89% 65.38% 67.79% 67.11% 

art Rotenberg 54.57% 55.65% 57.62% 57.24% 
 Proposed 38.11% 40.10% 43.05% 42.34% 

parser Rotenberg 65.11% 69.08% 71.25% 72.40% 
 Proposed 54.17% 59.77% 61.93% 63.57% 

vpr Rotenberg 58.79% 61.60% 63.99% 65.53% 
 Proposed 36.32% 39.44% 42.45% 44.94% 

gcc Rotenberg 54.12% 60.25% 63.40% 65.52% 
 Proposed 37.33% 42.80% 46.16% 48.29% 
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Table 8:  Efficiency Results for Rotenberg Trace Cache and the Proposed            

Technique Using Different Trace Cache Sizes and Benchmarks. 
 

Efficiency 
Benchmark Technique Trace Cache Size 

  256 512 1024 2048 
ammp Rotenberg 51.15% 48.03% 46.68% 45.82% 

 Proposed 69.84% 68.42% 66.44% 65.57% 
equake Rotenberg 23.93% 23.75% 22.44% 22.87% 

 Proposed 33.91% 33.61% 31.35% 32.02% 
art Rotenberg 42.97% 41.93% 40.12% 40.52% 

 Proposed 58.51% 56.42% 54.03% 54.76% 
parser Rotenberg 33.40% 29.63% 27.39% 26.35% 

 Proposed 44.56% 39.24% 37.16% 35.62% 
vpr Rotenberg 37.73% 35.09% 33.11% 31.74% 

 Proposed 59.98% 57.24% 54.65% 52.42% 
gcc Rotenberg 43.83% 38.01% 34.94% 32.91% 

 Proposed 60.36% 55.32% 52.07% 50.04% 
 

 

Using different trace cache sizes and benchmarks for fragmentation, as shown in 

figures 31, 34 and table 6, the proposed work has less fragmentation than Rotenberg 

trace cache for all sizes. Average improvement in fragmentation reached 21.11% for 

ammp, 19.09% for equake, 0.25% for art, 44.02% for parser, 36.16% for vpr and 

24.60% for gcc. 

 

Figures 32, 35 and table 7 demonstrate that the proposed work has less 

duplication than Rotenberg trace cache for all trace cache sizes. Average 

improvement in duplication reached 42.31% for ammp, 12.65% for equake, 27.36% 

for art, 13.89% for parser, 34.82% for vpr and 28.37% for gcc. 

 

The experimental results show improvement in efficiency over Rotenberg trace 

cache for all sizes, as shown in figures 33, 36 and table 8. The average improvement 
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reached 29.11% for ammp, 28.94% for equake, 26.00% for art, 25.46% for parser, 

38.66% for vpr and 31.45% for gcc. 

 

Results show that the average improvement when the proposed trace line is 

indexed by the result of XORing all the starting addresses in the line is higher than 

that when it is indexed by just the starting address of the first basic block, due to the 

fact that when there are many trace paths, i.e., when there are many traces start with 

the same address then they will be stored in different lines when the line is indexed by 

XORing all the starting addresses, but the next trace will overwrite the previous one 

when they are indexed by the starting address of the first basic block only.
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       6. Conclusions and Future Work 

6.1 Conclusions 

In this research, the effects of changing the indexing method on the trace cache 

performance were studied including three parameters: fragmentation, duplication and 

efficiency. The proposed technique is adding a lookup structure to the trace cache to 

store the interior blocks starting addresses and their locations in the trace cache to 

make it possible to access the interior blocks then to reduce fragmentation and 

duplication.  The line fill buffer of the trace cache was updated to include additional 

slots to store the interior blocks starting addresses in addition to the starting address of 

the line before copying them to the lookup table.  

The proposed work was compared to Rotenberg trace cache using the out-of-

order SimpleScalar simulator and different integer and floating point benchmarks 

included in the simulator. Experimental results show an average 27.53% improvement 

for duplication, 30.80% Reduction in fragmentation, and 30.66% improvement for 

efficiency. 

 

6.2 Future Work 

The concept of the trace cache is gaining support as a sufficient fetch 

mechanism to increase fetch bandwidth. Although this research applied a lookup 

structure to improve some trace cache parameters, there are still other techniques that 

can be done to study their effects on the trace cache performance:  

• To change the trace cache and lookup structures to be set associative 

instead of the direct mapped ones. 

• To implement the trace cache in a way that it contains the lookup 

structure inside it. Here the trace cache fill and selection logic will be 
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changed so that it contains additional slots in the header of each line to 

store the interior blocks starting addresses so that they can be accessed 

directly. 

•  Study the effects of changing the trace cache size in the previous 

structure on different parameters including fragmentation, duplication, 

efficiency, and hit ratio. 
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تقييم آفاءة عوامل الكاش المتتبعة 

  

  إعداد
عاليه ناصر

  

المشرف
الدآتور سامي سرحان

 

 ملخص

مشكلة .  التجزئة و التكرار،الفهرسة:  رئيسةأداء الكاش المتتبعة محدود بثلاثة أمور
الفهرسة تنتج بسبب ان سطر الأثر مفهرس باستخدام العنوان الأول مما يجعل من المستحيل 

التجزئة هي مقياس لعدد العناوين الفارغة داخل سطر الأثر و الناتجة . الوصول للعناوين الداخلية
شكلة الفهرسة حيث أن بعض العناوين ممكن أن التكرار هو أيضاً نتيجة لم. عن مشكلة الفهرسة

  .تبدأ سطر الأثر و في نفس الوقت توجد آعناوين داخلية لأسطر أخرى
  

حث للكاش المتتبعة بحيث أصبح من الممكن الوصول في هذه الرسالة تم اضافة جدول ب
جدول البحث سوف يخزن العناوين . للعناوين الداخلية ثم تقليل التجزئة و التكرار و زيادة الكفاءة

الابتدائية للفواصل الداخلية بالإضافة للعنوان الأول و الآخر لسطر الأثر بعد تخزينه داخل ذاآرة 
 إذا تم طلب عنوان داخلي فإنه من الممكن ايجاده داخل الكاش ،باستخدام هذه التقنية. مؤقتة

تم مقارنة الفكرة  .المتتبعة بعد البحث عنه في جدول البحث و أخذ فهرسه داخل الكاش المتتبعة
 % 26.48النتائج العملية تشير الى . Rotenbergالمقترحة مع الكاش المتتبعة المقترحة من قبل 

  .تحسين في الفعالية % 45.87 و ، تقليل في التجزئة %32.96 ،تحسين في التكرار
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